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ABSTRACT
Past decade has seen active research in social graph de-
anonymization with a variety of algorithms proposed. Previous al-
gorithms used handcrafted tricks and were locked in a co-evolution
of attack and defense with design of anonymization systems. We
present a radically improved algorithm for re-identifying social net-
work data. We use a machine learning system based on random
forests to identify nodes using their structural features. The algo-
rithm can handle a variety of threat models and is agnostic to the
de-anonymization scheme employed. This is substantiated by our
evaluation using three real-world social graph datasets under four
threat models. Our algorithm is consistently better than the previous
generation of algorithms as confirmed by comparison with seven
seed-based and seedless attacks based on two real-world social net-
works. It is time for attacks based on heuristics to be replaced by
learning models.

1. INTRODUCTION
The anonymization of social graphs is becoming an important

problem because of the growing secondary uses of social network
data. The collection of personal data has become pervasive in the
past decade. Data are often high-dimensional, content rich and very
desirable for research community. Social network datasets have
been a particular favorite of the researchers which are shared by
data holders fairly openly [1, 2].

Privacy is often seen as a hindrance and applied as an afterthought.
This manifests itself as poorly thought through data anonymization
schemes. Social networks are specially hard to anonymize due to
the interconnectivity of individuals. The literature suggests that it
may not be possible to effectively anonymize high-dimensional data
without destroying its utility [3]. Privacy risks can be alleviated to
some extent by interactive mechanisms like differential privacy [4–
7] where instead of releasing the data a query interface is provided
and the replies are tightly controlled by adding noise to provide
a privacy guarantee. Such mechanisms have their limitations as
they are non-trivial to setup, expensive to maintain and introduce
excessive noise where the data analyst’s goals are unknown [6].
Non-interactive privacy mechanisms that release a perturbed ver-
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sion of the data have been widely proposed [8–15]. Privacy re-
searchers routinely break such mechanisms [16–31]. Overwhelm-
ing evidence suggests either privacy or utility must be relinquished
if high-dimensional datasets are to be released.

Ji et al. [27] show that most anonymized social network datasets
can be largely de-anonymized purely based on structural knowledge
but searching for the optimal attack is computationally infeasible.
None of the approaches so far show performance close to what is
possible [27]. All approaches rely on hand-picked heuristics to
exploit structural similarity in social graphs. We overcome these
hurdles by proposing a fresh approach using machine-learning mod-
els to obtain an appreciable improvement. In particular, we present
a new generation of graph de-anonymization algorithm that is seed-
less and automatically discovers artefacts from data samples to con-
struct a de-anonymization learning model thus doing away with the
need for hand selected features. Learning from pertinent examples
limits human intervention and creates models that are robust, reli-
able and nimble to change.
Our contributions. Our primary contributions are:
• We present a new generation of heuristic free seedless graph

de-anonymization algorithm that uses machine learning to map
nodes across graphs (Section 3.3).
• We show that our proposed scheme can handle a variety of threat

models and is agnostic to the de-anonymization scheme em-
ployed (Section 4.1).
• The algorithm is evaluated on three real-world social graph

datasets under four threat models (Section 4).
• We conduct a thorough comparison of our algorithm with seven

seed-based and seedless attacks using two real-world social net-
work datasets. Our algorithm’s overall performance is better than
all the others by a healthy margin (Section 5.1).

2. DE-ANONYMIZATION LANDSCAPE
Graph de-anonymization traditionally tries to obtain a mapping

between two graphs using just their structure. The graph nodes
represent individuals and the edges represent relations among them.
After an anonymized graph is released the adversary tries to match
it with a known graph at to compromise privacy. The adversary’s
knowledge is often imperfect, but may be sufficient to launch potent
re-identification attacks [2, 18, 19]. Identification of individuals
present in both graphs could lead to discovery of sensitive relations
among them. The adversary could obtain side information from a
number of sources such as another data release, scraping the web
or by colluding with individuals who are part of a common social
network. Most data releases aim to preserve some utility to facilitate
analysis thus limiting possible perturbation of the data. This allows
the attackers to try to unravel the anonymization using structural
similarity and if available, any other side information.



2.1 Anonymizing Social Networks
Several social network anonymization schemes try to protect

node privacy, i.e., concealing an individual’s presence in the
graph [8–15]. Such schemes are mainly of two types [32–34] –
clustering-based and perturbation-based. Clustering-based graph
anonymization schemes release aggregate graph information in-
stead of the raw graph while perturbation-based schemes intro-
duce imperfections in the graph via a combination of edge addi-
tions/deletions to deter graph-structure-based de-anonymization at-
tacks. Summarizing data limits its scope and usage but provides bet-
ter privacy. Our work considers perturbation-based schemes, which
are more popular due to their wider applicability and simplicity.

2.2 Heuristics vs. Machine Learning
Perfect recovery of common nodes across two graphs is a hard

problem and computationally infeasible for large graphs in gen-
eral [35]. The problem becomes even harder when the two graphs
are noisy and the edges are perturbed. To make the problem
tractable an imperfect and incomplete mapping is computed whose
goal is to minimize the error and maximize the mappings. Mod-
ern graph de-anonymization algorithms are quite potent and can
re-identify a large fraction of nodes with good accuracy [16–18, 21–
31]. All such algorithms exploit graph heuristics to recover nodes
based on structural properties. This approach, although potent,
cannot produce the best performance with changing real-world
anonymization schemes. Additionally there is no predefined man-
ual to choose heuristics. The choice is based on judgment and
prior knowledge of anonymization techniques and is a constant co-
evolution of attack and defense.

Basic features based on neighborhood degree can be used to build
complex and expressive models that capture the learning task very
precisely [19, 36]. Handcrafting heuristics also suffers from the
problem of tuning the parameters for various threat models, datasets
and graph metrics which is done by trial and error. Pedarsani et
al.’s [29] approach is a prime example of the limitations. The au-
thors present a Bayesian model to capture the similarity of two in-
dividuals belonging to different graphs. The model requires knowl-
edge of the anonymization scheme and can only handle simple fea-
tures as it gets too complicated when feature complexity rises. Ma-
chine learning models can handle such complications and do not
require manual tuning. In the rest of paper we show how to design
such systems to breach privacy.

3. ALGORITHM DESIGN
In this section we describe the threat model under which our

de-anonymization algorithm is evaluated. We also define the key
components of the learning model and their role in deconstructing
the anonymization of social graphs.

3.1 The Threat Model
We evaluate our attack under the well-studied threat model origi-

nally proposed by Narayanan and Shmatikov [18, 37]. The model
assumes that the adversary has access to an auxiliary graph which
is used as side information to re-identify individuals in a sanitized
graph. Often data holders chose to sanitize the graphs prior to pub-
lishing them by removing all identifying information and adding
noise via edge manipulation (see, Section 2.1).

The adversary is simulated by sampling overlapping graphs from
a large social graph. The sampling generates auxiliary (Gaux =
(Vaux, Eaux)) and sanitized (Gsan = (Vsan, Esan)) graphs from
the original graph (G = (V,E)), where V and E represent nodes
and edges respectively. The overlap between the node and edge
sets of Gaux and Gsan is measured in terms of Jaccard Coefficient,

defined as JC(X,Y ) = |X∩Y |
|X∪Y | where X and Y are sets at least

one of which is non-empty. Node set overlap of αV is obtained by
partitioning V into three sets VA, VB and VC at random. The size
of VA, VB and VC is set as 1−αV

2
· |V |, αV · |V | and 1−αV

2
· |V |

respectively thus giving us Vaux = VA ∪ VB and Vsan = VB ∪
VC . Further noise is injected through edge perturbation – randomly
deleting edges between nodes in Vaux and Vsan; done by making
two copies of E and independently deleting edges at random from
each copy. The two copies are then projected on to Vaux and Vsan
to obtain Eaux and Esan. A fraction of 1−αE

1+αE
edges are deleted at

random from both graphs to get an edge set overlap of αE . This
overlap is only among the edges among the subgraph common to
Gaux andGsan, the edge overlap for the entire graph is much lower.
Deleting edges is widely used [18, 26, 27, 37] and one of the best
ways to introduce noise as it produces an even degradation of the
graph metrics and provides anonymity superior other schemes [20].

3.2 Learning to De-anonymize
We use a random-forests machine learning model to de-

anonymize social graphs. The learning task is to classify a pair
of nodes selected at random from Gaux and Gsan as identical or
non-identical. In this section we lay the foundation of the model
and show how to construct it. The simple learning task of node pair
classification is at the heart of our algorithm. We show how success
in the learning task translates to success at de-anonymization.

3.2.1 Features
Degree distribution is a fundamental graph property [38] and a

node can be uniquely identified by its neighborhood degree distribu-
tion [13]. This cannot be damaged too much without rendering the
data useless [20]. Research in link prediction [39, 40] depicts strong
benefits of using node similarity metrics to predict links. Such
metrics show significant improvement over random guessing. The
de-anonymization literature provides instances of node similarity
metrics derived using neighborhood degree distribution to represent
a node in a graph [19, 20]. In line with these approaches we define
a node’s feature vector using its neighborhood. These are generic
graph features, and not specific to any anonymization scheme.

The neighbors of a graph node can be split into two categories,
1-hop nodes and 2-hop nodes. The shortest distance between a
node and its 1-hop and 2-hop neighbors is one and two respectively.
The degree distribution of the neighbors is quantized to represent a
node [19, 36]. Figure 1 shows a feature vector composed of quan-
tized neighborhood degree distribution. Each bin contains the count
of nodes that have degree in a given range; for instance c0 = 23
indicates that there are 23 nodes in the neighborhood with degree
in the range (0 - b) whereas there are no nodes in the neighbor-
hood with degree in the range ((2 · b + 1) - (3 · b)) for c2 = 0.
Such vectors can be created for both 1-hop and 2-hop neighbors of
a node in an undirected graph – a total of two node categories. In
a directed graph the 1-hop nodes are divided into successors and
predecessors while the 2-hop nodes can be divided into successor-of-
successor, successor-of-predecessor, predecessor-of-successor and
predecessor-of-predecessor – a total of six node categories. A node
feature vector is defined as a concatenation of the two degree dis-
tribution vectors for undirected graphs and 12 degree distribution
vectors for directed graphs, counting both in-degree and out-degree
for the six node categories.

Additionally, we calculate the Silhouette Coefficient of the num-
ber of 1-hop neighbors and 2-hop neighbors for a node pair. The
Silhouette Coefficient of a node pair is defined as δ(d1, d2) =
|d1−d2|

max(d1,d2)
, where d1 and d2 are the number of either 1-hop neigh-

bors or 2-hop neighbors of nodes belonging to Gaux and Gsan



respectively. This trains the model to predict the degree deviation
for identical and non-identical node pairs. Modularity of features
makes them nimble and adaptable; the features represent a node
pair which is a data point for the learning model.

c0 = 23 c1 = 15 c2 = 0

size = b

n bins
. . .

. . .
cn−1 = 19

Figure 1: Feature vector of quantized node neighborhood

3.2.2 Training
Training a machine learning model in the absence of ground truth

is challenging. However, this can be overcome by sampling training
data by splitting Gaux and Gsan [20]. To accomplish this the ad-
versary just needs to have a rough estimate of the node set overlap
between the two graphs. Using this knowledge bothGaux andGsan
are split (see, Section 3.1) to create two sets of graphs and each set
is used to sample identical and non-identical node pairs. After sam-
pling the data from both sets is merged and used to train the model.
The newly created graphs from splitting Gaux and Gsan are not
anonymized again since they have already undergone anonymiza-
tion. The training pairs generated are used to train trees of the
random forest thus helping the model to learn the features for clas-
sifying previously unseen node pairs.

3.2.3 Classification
After training the model, an unseen node pair can be classified.

Classification proceeds by extracting features of the nodes in the
pair and passing it through the random forest. Passing the node
pair through a tree assigns it a probability of being identical. After
the node pair has been through all the trees, the accumulated proba-
bilities are averaged thus assigning the node pair a final prediction
score which is a real number in [0,1]. The higher the score, the
more likely the node pair to be identical.

3.3 Unraveling Anonymization
Classifying node pairs provides a measure of their structural simi-

larity but it cannot be used directly to identify true mappings. Choos-
ing a high classification threshold can be used to select identical
node pairs with high likelihood. However, false positives cannot be
completely avoided; too high a threshold will rule out a number of
node pairs which in spite of being identical, will not be selected thus
adversely affecting the number of mappings identified. The prob-
lem can be solved by two key observations [18]; first, high degree
node pairs are easier to re-identify than low degree node pairs due
to their higher information content and second, common friends of
a node pair provide a valuable metric for identification [39]. Rest
of the section describes how these observations can be used along
with structural similarity as quantified by the classifier to produce
actual node mappings.
3-phase re-identification. We carry out node re-identification in
phases, the key idea is to re-identify high degree nodes early and
then use them to attack low degree nodes. Since high degree nodes
are easier to attack we divide the node pairs into three categories
based on their degree. We pick three degree thresholds such that
t1 > t2 > t3 and divide the node pairs. All pairs with degree of
both nodes greater than t1 fall into Phase 1, all pairs with degree of
both nodes greater than t2 but not a part of Phase 1 fall into Phase 2
and finally all pairs with degree of both nodes greater than t3 but not
a part of either Phase 1 or Phase 2 fall into Phase 3. Nodes of degree

lower than or equal to t3 are left alone; t3 is chosen as a low value
and such nodes are hard to identify with high accuracy. Moreover,
they are not influential and evoke little interest in an adversary. We
train a separate random forest for each phase to focus the attack
better. The attack begins with Phase 1 node pairs, moves on to
Phase 2 and concludes with Phase 3 node pairs.
Initial mappings. To produce the initial set of mappings all node
pairs in Phase 1 are classified and only pairs with classification
score above 0.95 are selected. These mappings are dirty since at
this stage a node might appear in multiple mappings thus making
them contradictory.
Cleaning mappings. A set of dirty mappings are cleaned by greed-
ily selecting node pairs starting with the node pair with the highest
classification score. After a node pair is selected all further instances
of both the nodes in the pair are discarded from the remaining map-
pings. Cleaning improves the overall accuracy of the mappings.
Filtering node pairs. The identified initial mappings are treated as
true. At this stage, the mappings are bound to have errors but we
have no way to differentiate between a true and a false mapping.
However, the initial mappings are composed of node pairs which
are structurally very similar, even the non-identical pairs, the nodes
are highly likely to be in close proximity of each other. We leverage
this knowledge to filter node pairs based on the friends they share.
All node pairs (including those present in the initial mappings) are
filtered based on the cosine similarity of their neighbors that have
been identified in initial mappings. Cosine similarity between two
non-empty setsX and Y is defined asCS(X,Y ) = |X∩Y |√

|X|·|Y |
. The

filtering process only preserves node pairs that have a cosine simi-
larity above a threshold. For a directed graph the cosine similarity is
calculated as a sum of cosine similarity of common successors and
predecessors. The filtered node pairs are cleaned again to discover
new mappings, however, this time classification threshold is relaxed
and node pairs self-select themselves till all pairs are exhausted.
The new mappings discovered at the end of this step are preserved
and previous mappings are forgotten.
Propagating the mappings. Filtering node pairs using the initial
mappings increases the accuracy and coverage of subsequent map-
pings. Performance is further boosted by iterating the process. As
new mappings are discovered, filtering node pairs become more re-
liable due to increase in accuracy and number of common friends;
additionally, a larger set of mappings reaches higher number of
nodes. This produces a snowball effect causing accuracy and cov-
erage to grow till they stabilize. After this process concludes for
Phase 1 the mappings are frozen and we continue with Phase 2. As
we decrease the degree threshold to t2 the number of node pairs rise
sharply, making it inefficient to classify all node pairs. This is where
the mappings from Phase 1 come in handy; the Phase 2 node pairs
are pre-filtered before classification. Only the filtered mappings are
classified and cleaned; additionally, we decrease the number of node
pairs further by removing the nodes that have already been mapped
in Phase 1. In Phase 2 node pairs are first filtered using Phase 1 map-
pings, after new mappings are discovered they are rolled in with the
frozen Phase 1 mappings and the process is repeated. Whenever
new mappings are found at a later phase they are rolled in with
the frozen mappings, keeping only the latest mappings from the
current phase. After the mappings from Phase 2 stabilize they are
frozen and we repeat the same process for Phase 3. We observe that
mappings stabilize a lot quicker at later phases as after a sufficient
number of mappings has been discovered, new mappings do not
influence the filtering much.



4. EVALUATION AND RESULTS
In this section we present the analysis of results obtained by run-

ning 3PSL on the three datasets and four threat models.

4.1 Datasets and Implementation
The proposed 3-phase seedless attack (3PSL) is evaluated using

three publicly available real-world social networks, Flickr [41] – a
popular social network for sharing pictures, Epinions1 – a who-trust-
whom online social network of a general consumer review site and
Enron1 – an email communication network. The Flickr graph is
undirected and provides group membership of the users, Epinions
is directed and has no group information and Enron is an undirected
graph. The number of nodes and edges in the original graphs are
as follows: Flickr (nodes = 80 513, edges = 5 899 882), Epinions
(nodes = 75 879, edges = 508 837) and Enron (nodes = 36 692, edges
= 183 831). These graphs are used to produce overlapping auxil-
iary and sanitized graphs with varying node and edge overlaps (see,
Section 3.1); the details are summarized in Table 1. The number of
common nodes in each phase is depicted in in Table 2 and Table 3
shows the chosen degree thresholds (see, Section 3.3).

We analyze our attack with four different adversaries: (i) A1 –
Flickr undirected graph and node group membership (αE = αV =
0.33) (ii) A2 – Epinions directed graph (αE = 0.33, αV = 0.20)
(iii) A3 – Epinions directed graph (αE = 0.50, αV = 0.35) (iv)
A4 – Enron undirected graph (αE = 0.43, αV = 1). This allows
us to test our structural attack under varying graph densities, edge
overlaps, node overlaps and side information like directionality and
group membership. A Flickr node pair is considered identical only
if the group membership matches exactly.

The code for the project is written in Python and run using
CPython. We use a commodity laptop with a 2.8 GHz processor
and 16 GB RAM to run our experiments. Table 4 shows the number
of identical and non-identical pairs for the three phases used to train
the random forest classifier.

Table 1: Graph details

Gaux Gsan

Nodes Edges Nodes Edges

Flickr (αE = αV = 0.33) 51 594 1 322 970 51 698 1 302 064
Epinions (αE = 0.33, αV = 0.20) 30 832 114 908 30 584 113 461
Epinions (αE = 0.50, αV = 0.35) 41 651 183 284 41 673 193 830
Enron (αE = 0.43, αV = 1) 36 692 110 298 36 692 110 298

Table 2: Common nodes

Phase 1 Phase 2 Phase 3 Total

Flickr (αE = αV = 0.33) 8684 6608 2779 18 071
Epinions (αE = 0.33, αV = 0.20) 759 1234 783 2776
Epinions (αE = 0.50, αV = 0.35) 1008 2727 1603 5338
Enron (αE = 0.43, αV = 1) 1462 2214 8357 12 033

4.2 Phase 1 Classification
The classification of node pairs is successful with consistently

high true positive and low false positive rate. This is important for
the filtering to begin as it depends on the quality of initial node map-
pings. Additionally the classification produces good quality results
1https://snap.stanford.edu/data/index.html

Table 3: Degree thresholds for all phases

t1 t2 t3

Flickr (αE = αV = 0.33) 30 9 5
Epinions (αE = 0.33, αV = 0.20) 30 9 5
Epinions (αE = 0.50, αV = 0.35) 50 9 5
Enron (αE = 0.43, αV = 1) 25 9 2

Table 4: Number of identical (I) and non-identical (NI) samples
used for training

Phase 1 Phase 2 Phase 3

I NI I NI I NI

Flickr (αE = αV = 0.33) 8715 1 452 188 8765 1 988 697 4002 1 994 579
Epinions (αE = 0.33, αV = 0.20) 658 1 010 758 1303 1 998 397 920 1 998 940
Epinions (αE = 0.50, αV = 0.35) 1110 1 595 258 3729 1 996 012 2063 1 997 804
Enron (αE = 0.43, αV = 1) 2219 3 338 583 3520 1 996 121 14 364 1 985 529

overall as summarized by the area under the Receiver Operating
Characteristic (ROC) curve (AUC). The ROC illustrates how close
the classifier is to an ideal one. It does so by measuring the True
Positive (TP) rate as the False Positive (FP) rate tolerated is varied
in the range [0, 1]. An ideal classifier gives a TP rate of 1 at FP rate
0, whereas TP and FP are always the same for random guessing. In
practice a classifier will always make errors (FP), our goal is to max-
imize the correct classification rate (TP) for the error tolerated. The
Area Under the Curve (AUC) provides a summary of the quality of
the classifier, an ideal classifier has an AUC = 1 where as random
guessing produces a classifier with an AUC = 0.5. Classification
success is an important factor behind high quality clean node pairs.
Figure 2 shows the classification success and Table 5 provides a
snapshot of the relation between TP and FP rates for Phase 1 for all
adversaries. Even at a FP rate of 0.1% the TP rate is about 15-30%
which allows us to mount an attack. Table 6 lists the number of
mappings produced at various phases by 3PSL as well as the total
mappings. The sparser the graph the fewer high degree nodes it has
and consequently it has fewer candidates for Phase 1, this in turn
effects its propensity to be attacked. On the flip side sparse graphs
limit the scope of analysis.
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Figure 2: The ROC curve (AUC in legend)

4.3 Mapping Accuracy and Coverage
We use accuracy and coverage to study the performance of the

de-anonymization algorithm. Accuracy and coverage are defined as
mtrue
mout

and mtrue
mtot

respectively; where mout is the number of map-
pings output by 3PSL, mtrue is the number of true mappings out
of those output and mtot is the total number of mappings between



Table 5: Phase 1: False Positive vs. True Positive

False Positive 0.001% 0.01% 0.1% 1% 10% 25%

Flickr (αE = αV = 0.33) 2.03 5.55 13.17 32.53 74.90 95.12
Epinions (αE = 0.33, αV = 0.20) 1.58 5.14 14.36 46.38 90.25 98.16
Epinions (αE = 0.50, αV = 0.35) 4.96 13.59 29.96 64.58 93.25 98.51
Enron (αE = 0.43, αV = 1) 0.41 2.33 11.35 35.57 81.87 93.64

Table 6: Number of mappings produced

Phase 1 Phase 2 Phase 3 Final

Flickr (αE = αV = 0.33) 8534 5668 2743 16 945
Epinions (αE = 0.33, αV = 0.20) 721 1189 1774 3684
Epinions (αE = 0.50, αV = 0.35) 997 2791 1734 5522
Enron (αE = 0.43, αV = 1) 1407 2077 7555 11 039

Gaux and Gsan. Accuracy and coverage are important metrics to
evaluate the quality of mappings and a balance is needed to pro-
duce good performance. Tables 7 and 8 show the accuracy and
coverage of the mappings produced with a comparison presented
in Figure 3. Results show that our algorithm performs well and
produces high overall coverage and accuracy. The percentages for
Epinions (αE = 0.33, αV = 0.20) are lower because of the graph
being very sparse as well as a low edge and node overlap among
auxiliary and sanitized graphs thus making it hard to attack. Fig-
ure 4 shows the behavior of accuracy and coverage with increasing
node degree; as more information is available due to increase in
degree the node pairs become easier to attack.

Table 7: Mapping accuracy (%)

Phase 1 Phase 2 Phase 3 Final

Flickr (αE = αV = 0.33) 95.85 92.36 66.10 89.87
Epinions (αE = 0.33, αV = 0.20) 74.06 37.85 6.82 29.99
Epinions (αE = 0.50, αV = 0.35) 96.69 85.78 55.36 78.20
Enron (αE = 0.43, αV = 1) 86.99 71.74 25.31 41.91

Table 8: Mapping coverage for node degree above t3 (%)

Phase 1 Phase 2 Phase 3 Final

Flickr (αE = αV = 0.33) 94.20 79.22 65.24 84.27
Epinions (αE = 0.33, αV = 0.20) 70.36 36.47 15.45 39.81
Epinions (αE = 0.50, αV = 0.35) 95.63 87.79 59.89 80.89
Enron (αE = 0.43, αV = 1) 83.72 67.30 22.88 38.44

4.4 Evolution of Mappings
The mappings evolve as we iterate using the new mappings every

time to filter node pairs based on cosine similarity starting with
the initial mappings. Figure 5 shows that accuracy and coverage
are always low at the start but after enough iterations they stabilize.
Figure 6 depicts similar behavior for the total number of mappings.
Discovery of mappings in Phase 1 ensures quick convergence in
Phase 2 and Phase 3 with mappings stabilizing faster. The nature of
the graph also effects the convergence; Flickr (αE = αV = 0.33)
converges faster as group membership helps re-identify node pairs
whereas Epinions (αE = 0.33, αV = 0.20) being sparser with
low overlap takes the longest to converge. Increasing the Epinions
overlap improves the adversary’s side information and makes it
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Figure 4: Variance of accuracy and coverage with degree

stronger and more successful as seen by quicker convergence. We
perform an additional step for Epinions (αE = 0.33, αV = 0.20)
due to the low number of mappings; after completing Phase 2 we
reuse the Phase 2 mappings along with Phase 1 mappings to run
Phase 1 again, this improves the accuracy and coverage slightly
after which we discard the old Phase 2 mappings and proceed as
usual, only first run is reported here.
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Figure 5: Variance of accuracy and coverage on iterating

4.5 Error Analysis
In this section we analyze the errors that our algorithm makes.

Phase 3 node pairs are the hardest to re-identify due to being low
degree and consequently having insufficient information. Figure 7
illustrates a heat map of the joint degree distribution of true, false
and unidentified node mappings for Enron (results for other datasets
are similar). The figure shows that most false mappings are concen-
trated among low degree node pairs while the true mappings are
spread out across the diagonal. Mappings that could not be identi-

0 1 2 3 4 5 6 7 8

Iteration Number

0

1

2

3

4

5

6

7

8

9

N
u

m
b

er
of

M
ap

p
in

gs
(x

10
3
)

Phase 1

Phase 2

Phase 3

Flickr (αE = αV = 0.33)

0 5 10 15 20 25 30

Iteration Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
u

m
b

er
of

M
ap

p
in

gs
(x

10
3
)

Phase 1

Phase 2

Phase 3

Epinions (αE = 0.33, αV = 0.20)

0 2 4 6 8 10

Iteration Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
u

m
b

er
of

M
ap

p
in

gs
(x

10
3
)

Phase 1

Phase 2

Phase 3

Epinions (αE = 0.50, αV = 0.35)

0 1 2 3 4 5 6 7

Iteration Number

0

1

2

3

4

5

6

7

8

N
u

m
b

er
of

M
ap

p
in

gs
(x

10
3
)

Phase 1

Phase 2

Phase 3

Enron (αE = 0.43, αV = 1)

Figure 6: Variance of mapping count on iterating

fied are also concentrated among the low degree nodes with a light
spread along the diagonal but their overall numbers are low com-
pared to other mappings. A large number of true mappings are also
concentrated among the low degree nodes since such node pairs are
large in number and overwhelm the mappings in high node degree
vicinity.
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Figure 7: Joint Degree Distribution of node pairs

We study the proximity of generated mappings by merging Gaux
and Gsan using the common nodes to create the complete graph
Gcomp. We measure the shortest path length between the generated
mappings inGcomp. A true mapping produces a shortest path length
of 0 due to the source and the target being identical. For each
phase we plot the various path lengths as a percentage of the total
mappings produced. Figures 8, 9, 10 and 11 reveal that the output
mappings are always in close proximity, with almost all mappings



being within two hops of each other. Since the node features are
extracted from 2-hop neighborhoods it is not surprising that almost
all node mappings lie within this radius. It is highly unlikely for
distant nodes to be matched and this is confirmed by the results.
Our algorithm is most successful for Phase 1 node pairs and least
successful for Phase 3 node pairs. The neighborhoods of low degree
nodes are less diverse as compared to high degree nodes, moreover,
the number of low degree node pairs at a distance of two hops from
each other is a lot higher than node pairs at a distance of one hop.
Hence, when the algorithm makes an error it is more likely to do
so for low degree nodes at a distance of two hops from each other.
This explains the reason for a larger percentage of errors in the
region of two hop distance; the error percentage increases with
graph sparsity as we lose diversity as observed in the difference
between performance of A1, A2, A3 and A4. Sparse graphs also
have fewer Phase 1 and Phase 2 node mappings thus confounding
filtering of low degree node pairs.

Node pairs with a higher neighborhood overlap are more likely
to be identified. Figure 12 shows the cumulative percentage of node
pairs above a given neighborhood overlap is considerably higher for
node pairs that are correctly identified. The neighborhood overlap
is measured as the Jaccard Coefficient of the 2-hop neighborhoods
of the nodes of a pair. The mappings that are falsely identified as
well as those that could not be identified share a very similar low
neighborhood overlap which induces errors from the algorithm. An
effective way to defeat structural attacks would be delete enough
edges till overlap becomes low, the downside being such graphs
would be unfit for any meaningful study.
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5. RELATED WORK
Graph de-anonymization attacks broadly fall into two cate-

gories – seed-based and seedless. Nilizadeh et al. [16] (NKA) ex-
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Figure 12: Cumulative percentage vs Jaccard Coefficient

ploit the community structure of social networks to augment de-
anonymization. They propose a divide-and-conquer approach to
de-anonymize nodes is two stages. First the communities across
graphs are mapped, followed by mapping users within the commu-
nities.

Seed-based attacks start with a few known mappings between the
graphs and aim to expand them using graph topology. Backstrom et



al. [22] (BDK) were the first to present active and passive structural
attacks on anonymized social networks. The active attack proceeds
with the adversary inserting a small number of sybil nodes in the
graph before it is released. The sybil nodes create links with a set of
users whose privacy the adversary wishes to violate, and a pattern
of connections is also formed among the sybil nodes to make it
conspicuous. The passive attack is more subtle, the members of
the graph do not form new links but try to find themselves in the
published graph. They discover of links among users to which they
are connected. While the active attack can be targeted it is likely to
be detected [42–47]. The passive attack is hard to launch at scale
and both attacks are sensitive to perturbation in the released data.

Srivatsa and Hicks [17] (SH) splice mobility traces with social
network data to de-anonymize mobile users using common friends.
They present a two step process; the first step identifies landmark
nodes which are used to extend the mappings in the second step
using node similarity heuristics. Node centrality is used to identify
landmark nodes in both graphs; these nodes are mapped by trying
all possible combinations and selecting the most likely mappings
using a goodness-of-fit measure.

Narayanan and Shmatikov [18] (NS) present a two phase self-
reinforcing and feedback-based attack which provides the adversary
more auxiliary information as nodes are re-identified. The algo-
rithm first re-identifies seed mappings which are then propagated
to expand the mappings in the second phase. The attack requires
enough seeds of high degree and with specific structural properties.
The propagation step utilizes the seeds and topological information
to discover new mappings, the process is iterative and large scale
re-identification is possible under the right circumstances.

Korula and Lattanzi [23] (KL) use a high number of seeds (about
5-10%) and common neighbors to reconcile users across social net-
works. Their algorithm is not a hostile attack but is aimed at aiding
users by suggesting friends. Their technique is based on absolute
number of common friends and cannot attack low degree nodes.

Yartseva and Grossglauser [24] (YG) analyze the success of seed-
based social graph de-anonymization algorithms. They analyze the
dependence of large scale de-anonymization on the number of seeds
and propose ways to estimate the critical seed set size. A seed based
de-anonymization scheme similar to KL, based on common neigh-
bors, is also proposed which is shown to depend upon a critical num-
ber of seeds, properties of the graph, the overlap with the auxiliary
graph and common neighbor threshold for large scale percolation.
The algorithm has a high error rate when vertex sets of auxiliary
and sanitized graphs are not identical. Setting a threshold prevents
it from attacking low degree nodes.

Ji et al. [25] quantify the de-anonymizability of social networks
under seed knowledge. The authors investigate the feasibility of
mounting seed based de-anonymization attacks on social graphs
from the theoretical perspective. The results show that structural
attacks are more potent than attacks based only on seed information.

Ji et al. [26] (JLS+) present two seed-based attacks that use
structural similarity, common neighbors and seed induced distance
between nodes to identify node mappings. The first attack needs
the precise knowledge of overlap between the two graphs whereas
the second attack estimates it. The two phase algorithm first se-
lects seeds and then propagates them iteratively to the neighboring
nodes. Each iteration uses the already mapped nodes for mapping
expansion. The technique is resistant to moderate noise levels and
achieves good accuracy.

Turning on to seedless attacks, Wondracek et al. [28] use web
browser history stealing to demonstrate that social network group
membership is sufficient to de-anonymize users. Ji et al. [27]
(JLSB) study the de-anonymizability of social networks using struc-

tural information. They highlight the conditions under which perfect
and imperfect de-anonymization can be achieved. Although, most
social networks can be largely de-anonymized it is shown to be
computationally infeasible to search for the optimal attack. A com-
putationally feasible optimization based de-anonymization attack
which is a relaxed version of the optimum scheme is proposed as a
compromise. The attack performs well, though it is run on graphs
with high overlap.

Perdarsani et al. [29] (PFG) propose a Bayesian framework to
match common nodes across social networks without seeds. The
algorithm proceeds in rounds starting with mapping high degree
nodes using degree fingerprints. As most likely nodes are mapped
they generate additional features based on distance to the mapped
nodes which are used to map increasing number of nodes in sub-
sequent rounds. The algorithm presented is limited in scope as
the process relies on computing the probability of node pairs be-
ing identical based on their features. This requires knowledge of
the anonymization scheme to create a probabilistic model and even
after this knowledge it limits the features used to represent nodes
as the model complexity increases with that of the features. Our
algorithm is free from such limitations as the model is learned by
the classifier automatically in the training phase.

Perdarsani and Grossglauser [30] study the conditions under
which the structural correlation of two social graphs sampled with a
noise from a larger graph becomes possible. The authors investigate
the dependence of graph anonymity on its parameters irrespective of
the graph de-anonymization algorithm applied. It is shown that the
mean node degree needs to grow only slightly faster than logn for
nodes of a random graph with n nodes to be identifiable. Although,
the existence of an algorithm which achieves perfect matching has
been demonstrated, it remains a challenge to discover it.

Sharad and Danezis [19] demonstrate that de-anonymization of
social networks can be automated. Our work goes much beyond
the scope of the prior work by substantially enhancing the previous
techniques to recover end-to-end node mappings.

5.1 Comparison with the State of the Art
In this section we measure how well our attack fares as compared

to other prominent ones. Ji et al. [37] conduct a survey of graph
anonymization and de-anonymization strategies in which they eval-
uate the de-anonymization attacks using the Enron and Facebook
datasets under A4’s threat model; we compare 3PSL with the re-
ported evaluation. We consider all the passive seed-based and seed-
less attacks for comparison, active attacks are excluded as they do
not scale well and require considerable control on the part of the
adversary. We exclude the passive attack of BDK as it does not work
on perturbed graphs. All seed based attacks are provided 50 seed
mappings [37]. The distance vector based attack of SH is used for
comparison as all other attacks do not scale even with pre-identified
seed mappings. Our comparison uses the graph overlap estimating
attack of JLS+. Ji et al. [37] setmout = mtot in their experiments2,
hence accuracy is equal to coverage (see, Section 4.3).

We compare the performance of attacks based on Enron and Face-
book (nodes = 63 731, edges = 817 090) datasets same as those used
by Ji et al. [37]. A shoulder to shoulder comparison is presented by
measuring the coverage based on all node mappings, not just those
attacked. We do not attack nodes of degree below three for Enron,
doing so would increase the coverage but it would come at the cost
of accuracy. Figure 4 shows the degradation of Enron’s coverage
computed for all nodes as degree is increased. Facebook is more
dense than Enron and has a higher average node degree; as seen

2Confirmed via communication with the authors.



Table 9: Comparison of coverage and accuracy percentage with
other attacks (accuracy = coverage for all attacks except 3PSL); ∅

denotes a seedless attack. A higher percentage is better.

Enron Facebook

Coverage Accuracy Coverage Accuracy

KL 15.96 15.96 5.99 5.99
JLS+ 13.05 13.05 15.68 15.68
SH 12.77 12.77 15.63 15.63
JLSB∅ 11.91 11.91 14.73 14.73
YG 3.10 3.10 28.32 28.32
PFG∅ 7.39 7.39 10.87 10.87
NS 0.37 0.37 0.18 0.18
3PSL∅ 12.61 41.91 >40 >65

from Sections 4 and 5, this increases adversary’s success [27, 37].
We estimate a lower bound for the overall accuracy and coverage
for Facebook by using the values for Enron.

Table 9 presents a thorough comparison of all the attacks. We
measure 3PSL’s accuracy and coverage as node degree is varied
thus facilitating a comparison. We see that despite attacking only
nodes of degree greater than two and no seed knowledge 3PSL’s
overall performance is better in all scenarios by a large margin. KL
is the best attack for Enron, even with seeds it only achieves a cov-
erage and accuracy of 15.96% marginally better than our coverage
of 12.61%, we achieve an accuracy of 41.91% which is over 2.5
times than that of KL. The best seedless attack for Enron fares even
worse with an coverage and accuracy of 11.91%; comparatively our
algorithm has a higher coverage with almost four times the accuracy.
The best attack for Facebook is YG which uses seeds to achieve a
coverage and accuracy of 28.32% our algorithm achieves a coverage
of over 40% and more than twice the accuracy of over 65%. The
best seedless attack for Facebook achieves a coverage and accuracy
of 14.73%; comparatively our algorithm achieves more than twice
the coverage with over four times the accuracy. Seed knowledge
is critical to attack performance in sparse graphs (Enron) vis-a-vis
a dense graph (Facebook). As adversary’s access to structural in-
formation is limited, the dependence on seeds increases. Thus gap
between seedless and seed-based attacks is larger for sparse graphs
like Enron as compared to denser graphs like Facebook. Even in
such an adverse scenario our algorithm shows better overall perfor-
mance for Enron with only slightly lower coverage (compared to
seed-based attacks) to achieve a drastic gain in accuracy, that too
without seed knowledge. For Facebook which is much dense no
other attack comes even close to the performance of our algorithm
even with seed knowledge. The attack on Facebook is more suc-
cessful as a larger fraction of node pairs fall under Phase 1 and 2
as compared to Enron which are easier to attack. In particular, only
32.79% of Enron nodes have degree over two whereas the percent-
age for Facebook rises to 65.18%. We can increase the coverage of
our algorithm with a decrease in accuracy by attacking lower degree
nodes. It is better to have a low coverage and high accuracy thus
producing some useful mappings rather than high coverage and low
accuracy which would be akin to random guessing. 3PSL’s accu-
racy is appreciably higher than all other attacks including those that
use seed knowledge.

6. DISCUSSION
As seen from Sections 4 and 5.1 3PSL shows a marked improve-

ment over all graph de-anonymization algorithms. Not only does it

perform better but it can also accommodate a variety of adversaries
and does so while using less information than all the seed-based at-
tacks. The attack is agnostic to the change of anonymization scheme
and trains a model using data samples generated from anonymized
graphs. The success of our attack emanates from the fact that we
not only consider structural similarity but also similarity based on
common friends to recover mappings. These metrics are orthogonal
and thus complement each other perfectly. Our approach is contrast-
ing to schemes relying only on common neighbors based similarity
metrics [23, 24]; thus achieving an improved performance while
attacking graphs with low node overlap.
Seed quality. Seed-based attacks assume knowledge of seeds to
prime the de-anonymization process. This may be considered rea-
sonable in certain scenarios, but possession of error free seed map-
pings is a very strong requirement. As seen in Section 5, algorithms
impose additional requirements on the seed set such as their size,
structure, degree, centrality and neighborhood. These requirements
along with the size and structure of the graph under attack heavily
influence the quality of the seeds and as a result do not generalize
well [48]. Such graph de-anonymization algorithms are finicky as
their success is very sensitive to the size and quality of the seed set,
and below a critical size the attack fails to converge [24, 49, 50].
Table 9 shows that the performance of all seed-based attacks (KL,
NS) does not improve when attacking Facebook as compared to En-
ron; seed selection has a huge impact on the results. Seed-based
attacks are even less suitable when the node and edge set overlap of
auxiliary and sanitized graphs is low. Exploiting seeds could lead
to powerful de-anonymization attacks, though reliance on the avail-
ability of seeds is a concerning limitation. Ji et al. [25] demonstrate
that structural attacks can be more potent than seed based attacks
which is corroborated by our results thus tilting the scales further in
favor of relinquishing dependence on seed-based attacks.
Parameter choice. Classifying node pairs is more expensive than
filtering them hence choice of t1 influences the overall efficiency of
the algorithm as the runtime is linear in the number of node pairs
classified. It is also important to partition node sets in such a way
that trained decision forests can be focused to maximize accuracy
due to similar properties of the data points. Choosing t1 too low
makes the data points too varied where as setting t1 too high yields
too few data points to effectively train the model; for this reason
sparser graphs have a lower t1. Flickr has a lower t1 despite being
dense because we could select node pairs based on identical group
membership, this allows us to get more high quality mappings for
Phase 1. Identifying node mappings in a phase helps reduce the
number of node pairs to be tested in subsequent phases hence it is
desirable to identify a large number of nodes in Phase 1, t2 and t3
are identical for all datasets except for Enron we chose a lower t3
to increase coverage and enable comparison. We studied the effect
of threshold selection by varying t1 in the range 30± 9 in steps of
3 and t2 in the range 9 ± 3 in steps of 2; as discussed varying t3
influences the number of node pairs under attack hence we do not
change it (see, Section 3.3). Such variations impacts the run-time
of 3PSL but has little effect on the overall results.

We set vector length and bin size (n, b) to be (7,50) and (30,35)
for directed and undirected graphs respectively (see, Section 3.2.1).
The value of (n, b) is chosen such that it can accommodate higher
degrees and their variation, the choice does not have a huge impact
on the results [19]. The cosine similarity threshold of 0.2 filters out
most spurious matches; the remaining matches are cleaned using
the classifier. We experimented by setting the value to 0.3,0.4,0.5
but did not see appreciable change in the results; setting it too low
defeats the purpose. Non-identical node pairs with sufficiently high



degree tend to have very low cosine similarity. Testing accuracy
increases monotonically with the forest size [51–53]; Criminisi et
al. [51] obtain strong results with forest size of 400 trees, which is
what we use. Phase 1 mappings stabilize after about 10 iterations
which can be increased further to ensure stability as each iteration
is cheap at this stage. Subsequent phases do not require many itera-
tions due to sufficient mappings being found in Phase 1.
Feature selection. We experimented by using features such as cen-
trality, edge weights and group membership in addition to those
proposed. Complicated features do not provide significant improve-
ment over those used. Using the perfect knowledge of groups barely
impacts the ROC curve; this is due to the fact that identical group
membership is already captured to a large extent in the 2-hop neigh-
borhood degree distribution. Exploiting group membership to im-
prove attacks (NKA) is useful for schemes that only use local fea-
tures but it does little in our case. Moreover, the knowledge of group
membership is not likely to be precise in reality which further damp-
ens their effect. Even if using complicated features were to provide
a significant improvement, it would not matter a lot in the grand
scheme of things. We use the success of classifier to select node
pairs that are more likely to be true, hence beyond a certain point the
classification quality does not make a major difference. It is more
important to improve the filtering process (see, Section 3.3) as it
makes the algorithm more efficient by improving the ratio of true vs
false node mappings and decreasing the number of mappings to be
classified. We also experimented with features beyond two hops but
this increased false positives, as using large subgraphs to represent
a node produces overlaps with many other nodes.

Robustness of 3PSL
Due to similar properties of social networks learning acquired from
training statistical models are transferable across datasets [36]. This
is one the key reasons behind robustness of 3PSL which emanates
from the success of the machine learning task (see, Section 3.2) at
its core. The learning algorithm obtains a high TP at low FP and
thus a ROC curve with a high AUC even when trained on Epin-
ions (nodes = 75 879, edges = 508 837) to attack Pokec1 (nodes
= 1 632 803, edges = 30 622 564) and vice-versa [19]. Thus the
learning algorithm transcends the quirks of the datasets and learns
the de-anonymization function which allows it to attack a dataset
when trained on another. The closer the source and target graph
distribution the better the performance which is the primary rea-
son behind our re-purposing of the anonymized datasets for training
(see, Section 3.2.2) and simulates a practical adversary; but even
cross-training using social networks of completely different nature
produces very strong results.

Hence, even if auxiliary and sanitized graphs have different den-
sities, sizes, average node degree etc., the algorithm can still attack
them. The training is agnostic to the size of graphs as discussed
above. If the graphs are too small (less than a few thousand nodes)
or too sparse then this will impact training and the attack success,
however, this would come at the cost of utility. Given the sum of
total number of nodes in both graphs is constant the task is hard-
est for the adversary when the graphs are of equal size because
this maximizes the number of node pairs to be tested. The learn-
ing model tries to distinguish between identical and non-identical
node pairs. Our experiments show that such pairs are very different.
Hence, even when Gaux and Gsan are generated differently the ex-
treme difference between the node pairs would persist unless a huge
amount of perturbation is introduced. Additionally, random edge
deletion is one of the most damaging ways to perturb graphs [20].
Generating auxiliary and sanitized graphs differently might make
the attack even more potent if the graph perturbation algorithm pre-

serves more information than random edge deletion.
Furthermore, as demonstrated by Sharad [20] the learning task

which forms the core of 3PSL, can handle a variety of perturbation-
based social graph de-anonymization schemes – ranging from ran-
dom edge deletion (see, Section 3.1), randomly adding and deleting
edges [13, 54, 55], randomly switching edges [40, 54–56], ran-
domly deleting edges and inserting non-edges [57], making the
graph k-degree anonymous [58] and making the graph 1-hop k-
anonymous [59]. No other attacks are known to work let alone be
as effective for such a diverse set of threat models, social graph
datasets and graph perturbation schemes. The improvements are
a result of optimal utilization of an adversary’s resources by using
machine learning models instead of sub-optimally and arbitrarily
hand-picking graph heuristics and algorithm attack parameters.

7. CONCLUSION
Adversarial machine learning and de-anonymizing behavioral

patterns are two sides of the same coin and they are converging
fast. In the presence of big data, attacks based on heuristics will
gradually be replaced by learning models because of their adapt-
ability, automation and superior performance. Not only are the
automated models better but the learning is transferable across
datasets [19, 36], this provides a significant improvement over the
traditional techniques. It is not surprising that learning models can
surpass human intuition although the margin of improvement is
startling. Our work shows how to approach the problem of social
graph de-anonymization in a systematic manner. We present an
algorithm that outperforms all the other graph de-anonymization
algorithms proposed so far while using much stringent threat mod-
els without seed knowledge. The algorithm is not dependent upon
heuristics for its success and uses the simple classification task of
categorizing node pairs as identical or non-identical across graphs.
It uses modular features that can adapt to a variety of threat mod-
els. The machine learning model does not require knowledge of the
anonymization scheme for training. De-anonymization is simple
and efficient as confirmed by evaluation based on three real-world
social graph datasets under four threat models. A thorough compari-
son with seven modern de-anonymization attacks using two datasets
is also presented. Our algorithm achieves a coverage of 12.61% and
accuracy of 41.91% for Enron dataset, the next best algorithm is
seed-based and achieves a coverage and accuracy of 15.96% which
is substantially lower. The difference is even more stark for Face-
book where our algorithm achieves a coverage of over 40% and an
accuracy of over 65%, the next best algorithm is seed-based and
can only achieve a coverage and accuracy of 28.32%. Our attack
shows a marked improvement over all other attacks. Optimizing
parameters by training is better in adverse scenarios as human error
is costlier in limited information.

The attack presented needs to evaluate all node pairs between
auxiliary and sanitized graphs in order to discover node mappings,
this makes the attack slightly expensive but it is still very practical.
Machine learning approaches tend to suffer when the training data
is insufficient e.g. for sparse graphs with low average node degree;
on the contrary such graphs are of limited use and hard to attack in
general. Future work could try to improve upon these limitations.
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