Research Problem

- Machine learning (ML) promising when applied to the malware domain.
- In-lab experiments (CV, leave-one-out) show performance metrics, but:
 - Malware is an evolving target.
 - Unclear how ML would really perform once deployed.
- Real-world deployment hard to assess.
- New, previously unseen labels.
- Changes in the data distribution.

We need statistical (quality) metrics

Conformal Evaluator: ML Evaluation with Confidence

Build statistical metrics (RQ1) to highlight:

- **Statistical data distribution according to the algorithm** (RQ2.1)
 - Shows whether classes overlap.
 - Provides insights during ML design (RQ3).
- **Statistical confidence on the ML algorithm choices** (RQ2.2)
 - High confidence puts trust on the ML process (RQ3).
 - Provides thresholds to detect and contain ML decay during deployment (RQ4).

RQ1: Statistical Metrics

- **Algorithm credibility** – Captures the conformance of the algorithm’s prediction for a given data point.
- **Algorithm confidence** – Measure the distinguishability of a sample’s prediction among the other families.

RQ2, RQ3: Statistical Metrics Insights (Design)

RQ4: Statistical Indicators of ML Decay (Deployment)

- **Alpha assessment** – Shows the statistical distribution of data according to the algorithm under evaluation.
- **Decision assessment** – Shows the quality with statistical confidence of correct and incorrect choices of the algorithm under evaluation.
- **Testing in real-world scenarios** – Statistical metrics provide indications on ML decays when no labels are available.

This research has been supported by the UK research grants EPSRC EP/R033943/1, EP/R000265/1, and EPSRC EP/NS3/2701/1.