De-anonymizing D4D Datasets

Kumar Sharad1 \hspace{1cm} George Danezis2

1University of Cambridge

2Microsoft Research

July 12, 2013
Can Personally Identifiable Information be Anonymized?

- Research indicates that anonymizing feature rich data is hard.
- In general it is not possible while preserving the usefulness of data.
- Release of real data presents an interesting opportunity to test the science.
- Encourages responsible data release.
Overview

1. The D4D Challenge
2. The Dataset 4
3. Re-identification
4. Results
5. Open Problem
The Data for Development (D4D) Challenge

- Introduced by Orange in July 2012 for research related to social development in Ivory Coast.

- Four datasets of *anonymized* call patterns released.

- We were provided a preliminary version of the datasets.

- Ivory Coast facts
 - Population - 22.4 million.
 - Mobile phone users - 17.3 million.
 - Orange subscribers - 5 million.
 - A country fraught with civil war.

The Dataset 4

- Contains communication sub-graphs (ego nets) of 8300 randomly selected individuals (egos).
- Provides all communication between egos and their neighbours up to 2 degrees of separation.
- All nodes have random identifiers.
- Nodes common between sub-graphs have a different identifier in each sub-graph.
Toy Example
The ego net G_0
The ego net G_1
Sub-graph common to both G_0 and G_1
Real World Example
The ego net G_0
The ego net G_1
Sub-graph common to both G_0 and G_1
1-hop nodes

- Complete neighbourhood graph available.

- The degree distribution of a node’s neighbours is almost unique.

- Graph invariants completely preserved even after anonymization!

- Use this to map nodes across ego nets.
2-hop nodes

- Parts of neighbourhood graph missing.

- Graph invariants *partially* preserved after anonymization.

- Observe the 1-hop nodes common between a pair of nodes in two ego nets.

- For pairs with significant match, find the cosine similarity between them based on the degree distribution of neighbourhood.

- Use bipartite matching to maximize the overall similarity score across pairs.
Results

1-hop nodes
- Almost all the common nodes were re-identified with over 98% success rate.
- Hard to identify secluded nodes.

2-hop nodes
- Close to 15% (often over 20%) of common nodes re-identified.
- Success rate over 75% (occasionally over 90%).

2 Based on EU email communication network - http://snap.stanford.edu/data/email-EuAll.html
How to efficiently re-identify nodes across ego nets which have no 1-hop nodes in common?
Contact

Kumar Sharad
- Kumar.Sharad@cl.cam.ac.uk
- research.sharad.de

George Danezis
- gdane@microsoft.com
- research.microsoft.com/en-us/um/people/gdane